32 BIO FCP A world's land speed record was set by Colonel John P. Stapp when in March 1954 he rode a rocket-propelled sled that moved along a track at 1020 km/h. He and the sled were brought to a stop in 1.4 s. (See Fig. 2.3.1.) In terms of g, what acceleration did he experience while stopping?

$$v = |0.80 \text{ km/h} = |0.20 \times \frac{|0.3 \text{ m}|}{3600 \text{ S}} \approx 283.3 \text{ m/s}$$

$$t = |0.4 \text{ S}$$

$$v = 0$$

$$0 = \frac{0v}{0t} = \frac{v - v_0}{t - t_0} = \frac{0 - 283.3}{1.4} \approx -20.44 \text{ m/s}^2$$

$$9 = 9.8 \text{ m/s}^2 \implies 0 = \frac{-202.4}{9.8} \text{ g} \approx -20.659 \approx 219$$

33 ESSM A car traveling 56.0 km/h is 24.0 m from a barrier when the driver slams on the brakes. The car hits the barrier 2.00 s later. (a) What is the magnitude of the car's constant acceleration before

b)
$$v = at + v$$
, $\rightarrow v = -3.56 \times 2 + 15.55 \approx 8.43 \text{ m/s} \approx 30.3 \text{ km/h}$

34 MOO In Fig. 2.12, a red car and a green car, identical except for the color, move toward each other in adjacent lanes and parallel to an x axis. At time t = 0, the red car is at x_r = 0 and the green car is at x_g = 220 m. If the red car has a constant velocity of 20 km/h, the cars pass each other at x = 44.5 m, and if it has a constant velocity of 40 km/h, they pass each other at x = 76.6 m. What are (a) the initial velocity and (b) the constant acceleration of the green car?

$$v_1 = 20 \, \text{km/h}^{5}$$
; $v_2 = 44.5 \, \text{m}$
 $v_2 = 40 \, \text{km/h}^{5}$; $v_3 = 76.6 \, \text{m}$

and (b) the constant acceleration of the green car?

$$v_1 = 2 \circ k m / k \quad ; \quad z_1 = 44.5 m$$
 $v_2 = 4 \circ k m / k \quad ; \quad z_2 = 76.6 m$
 $v_3 = 4 \circ k m / k \quad ; \quad z_4 = 76.6 m$
 $v_4 = 22 \circ m$
 $v_4 = 4 \circ k m / k \quad ; \quad z_4 = 76.6 m$
 $v_5 = 4 \circ k m / k \quad ; \quad z_5 = 76.6 m$
 $v_6 = 4 \circ k m / k \quad ; \quad z_7 = 76.6 m$
 $v_7 = 4 \circ k m / k \quad ; \quad z_7 = 76.6 m$
 $v_8 = 22 \circ m \cdot k \quad ; \quad z_7 = 8.01 \circ k \quad ; \quad z_7 = 8.01 \circ$

green Car:
$$a = \text{Const.}$$
 $\rightarrow z = \frac{1}{2}at^2 + 10t + r_0$

(1): $z_1 = \frac{1}{2}at^2 + 10t + r_0$ $\Rightarrow 44.5 = \frac{1}{2}ax(8.01)^2 + 10t + 120t$

(2): $z_2 = \frac{1}{2}at^2 + 10t + r_0$ $\Rightarrow 76.6 = \frac{1}{2}ax(6.894)^2 + \frac{1}{2}ax($

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \times \\ 32.080 \\ + 8.01 \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \\ \end{array} \\ \begin{array}{$$

$$32.08 \times 6.8940 + 8.01 \times 6.8940_{o} = -175.5 \times 6.894$$

$$23.08 \times 6.8940 + 8.01 \times 6.8940_{o} = -143.4 \times 8.01$$

$$23.76 \times 8.01 \times 6.8940_{o} = -143.4 \times 8.01$$

Figure 2.12 Problems 34 and 35.

35 Eigure 2.12 shows a red car and a green car that move toward each other. Figure 2.13 is a graph of their motion, showing the positions $x_{g0} = 270$ m and $x_{r0} = -35.0$ m at time t = 0. The green car has a constant speed of 20.0 m/s and the red car begins from rest. What is the acceleration magnitude of the red car?

green car: v=const. = -20 m/s

red car: a = const. =?

7,= 7g : t=12 5

36 A car moves along an x axis through a distance of 900 m, starting at rest (at x = 0) and ending at rest (at x = 900 m). Through the first $\frac{1}{4}$ of that distance, its acceleration is +2.25 m/s². Through the rest of that distance, its acceleration is -0.750 m/s². What are (a) its travel time through the 900 m and (b) its maximum speed? (c) Graph position x, velocity v, and acceleration a versus time a for the trip.

$$v_{s=0} = 0.750 \text{ M/s}^{2}$$

$$v_{s$$

